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Abstract

The Savage–Hutter (SH) equations for dry granular flows are a system of hyperbolic balance laws which is based on

a Coulomb friction approach for the description of internal failure and basal sliding and determines the time-dependent

behaviour of depth and depth-integrated velocity components in a terrain following coordinate system (tangential to

the sliding bed). Alternatively the Iverson–Denlinger (ID) equations are a system of hyperbolic balance laws for the

determination of the time-dependent behaviour of fluid-saturated granular flows. They are based on the SH-theory,

explicitly consider the fluid phase using a two-phase approach, but do not correspond with the SH-theory in the cases of

a vanishing fluid phase. Important terms originating from the kinematic bottom boundary condition and taking care of

the variable bed slope are neglected and a term taking the internal failure into account was added. In this paper I

present a new numerical method, a wave-propagation method for the solution of the SH- and the ID-equations. It

works in the finite volume context and uses Godunov-type schemes with spatially discretized flux functions. Since the

SH-equation as well as the ID-equations are balance laws, the source terms are taken into account in form of adapted

flux differences before the wave decomposition is performed. A first order as well as a second order version are derived.

They are compared with the classical fractional-step or operator-splitting method for the solution of balance laws,

which serves as a reference method. Both methods are applied on several test problems: (1) a dry granular flow in a

rectangular flume with a bed surface inclination of H ¼ 31:4�, (2) a dry granular flow in a rectangular flume (H ¼ 40�),
(3) a dry granular flow down an inclined plane (H ¼ 31:4�), (4) a dry granular flow down an inclined plane diverted by

an obstacle (H ¼ 40�) and (5) a fluid-saturated granular flow down an inclined plane (H ¼ 31:4�).
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Granular flows occur when inhomogeneous sediment–air mixtures move down steep slopes or channel-

shaped regions in response to gravitational acceleration. The deformation of dry granular materials takes
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place in a slow tranquil mode characterized by enduring frictional grain contacts. Their rapid agitated flows

are characterized by brief inelastic grain collisions. In contrast to the dry granular flows there are the fluid-

saturated granular flows which are downslope moving inhomogeneous mixtures of sediment, water and air.
The deformation and flowing processes characterizing these phenomena are slightly different from the dry

granular cases. Whereas solid grain forces dominate the physics of dry granular flows or rock avalanches

the solid and fluid forces have to act in concert in cases of fluid-saturated granular flows. Grain friction,

grain collision and viscous fluid flow simultaneously transfer momentum. The interaction of solid and fluid

forces not only distinguishes fluid-saturated granular flows from dry granular flows but additionally gives

them unique destructive power. Like dry granular flows or rock avalanches, debris flows or saturated

granular avalanches can occur in real circumstances without or with little warning. The capricious timing

and magnitude of such real events hamper collection of detailed data. Scientific understanding has thus
been gleaned mostly from qualitative field observations, highly idealized first generation laboratory ex-

periments and theoretical models.

In order to overcome these problems and to reach the goal of reliable predictions of dry and fluid-

saturated granular avalanches great efforts have been made to improve the theoretical understanding of

these phenomena [3,7,11,12,14–16,23,25,26,33].

In the last decade amodel familywhich is based on the Savage–Hutter theory for shallowdry granular flows

has become popular for the description of the time-dependent behaviour of dry granular and fluid-saturated

granular flows. Numerous numerical techniques and methods had been developed for the solution of these
Savage–Hutter like governing equations for typical moving boundary value problems [1,6–9,13,20,22,27–

29,32]. On the one hand these techniques base on a Lagrangian moving mesh finit-difference scheme in which

the material is divided into quadrilinear cells (2D) or triangular prisms (3D).

On the other hand there are shock-capturing upwind schemes which are based on approximate Riemann

solvers [4,5,10,17,20,32] and very successfully have been applied for gas dynamical and shallow flow

problems [20,32,33].

In this context LeVeque [18] developed a new class of wave-propagation methods for the solution of

multidimensional hyperbolic systems of conservation laws. These methods are based on the solution of
Riemann problems using approximate Riemann solvers for the wave structure and on the introduction of a

fluctuation technique which reflects the generalization of the flux difference splitting technique for con-

servation laws, whereby the left- and the right-going fluctuations reflect the net effect of all left- and all

right-going waves. LeVeque et al. [21] extended this class of wave-propagation methods on balance laws

operating on spatially varying flux functions. Thereby the source term is used to modify the flux difference

before the wave decomposition is performed. This method has great advantages in cases when the classical

fractional-step method for the incorporation of more complex source terms fails or produce unrealistic

results, because of the two step solving procedure. Thereby, each solving step can be responsible for a little
change or imbalance in the solution even though the advection process and the source term representing the

net driving force should perfectly cancel out. The changes in the solution are caused by the very different

numerical schemes (approximate Riemann solver, ODE-solver) which are applied [20] and responsible for

the relatively poor agreement between laboratory and numerical results computed with first order methods

concerning the propagation length as function of time and the deposition behaviour in the case of dry and

fluid-saturated granular flows [3].

Here I develop a wave-propagation method which operates on the basis of either the Harten, Lax and

Van Leer (HLL) or the modified Harten, Lax and Van Leer (HLLC) approximate Riemann solver [10,29]
for dry and fluid-saturated shallow granular flows, respectively, for the solution of the Savage–Hutter and

the Iverson–Denlinger equations in two dimensions. Comparison between laboratory results [3] and results

computed with this new method exhibits good agreement for the propagation length as a function of time,

respectively, the propagation velocity, whereas the results computed with the classical fractional-step

method reveal significantly lower agreement for the propagation length as a function of time and hence
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emphasizes the shortcomings of the fractional-step method in general and especially in the context of free

surface flows with more complicated source terms.

Section 2 presents the governing SH- and ID-equations in conservative form for dry and fluid-saturated
granular flows.

In Section 3 the new wave-propagation method for dry and fluid-saturated granular flows is developed.

It works in the finite volume context with an approximate Riemann solver. Two approximate Riemann

solvers, the HLL and the HLLC solver, are used and provide an efficient and elegant possibility, which

operates on the basis of an exact Riemann solver, for the location of the front margins and the corre-

sponding velocities.

In Section 4 the method is applied to five laboratory scale problems: (1+2) two dry granular flows

down rectangular flumes, (3) a dry granular flow down an inclined plane, (4) a dry granular flow down
an inclined plane, whereby the flow is diverted by an obstacle which is located on the inclined plane

and (5) a fluid-saturated granular flow down an inclined plane. The inclined rectangular flumes as well

as the inclined planes additionally have a smooth transition to a horizontal runout zone, which have

different inclination angles. For each experiment the material mixtures are initially hold at rest, start to

slide down the flume or the inclined plane after a sudden release, pass the smooth transition zones and

come to rest in the horizontal runout zones. Comparison between the results of the numerical and

laboratory experiments reveals that the classical fractional-step method computes wrong propagation

lengths as function of time, respectively, propagation velocities, whereas the new wave-propagation
method computes results which show a good agreement with the laboratory experiments [3]. Section 5

presents the conclusions.
2. Governing equations

Many types of flows can be characterized as shallow-water or shallow flows. The general characteristic of

such flows is that all vertical dimensions are much smaller than any typical horizontal scale
1 � H
L

ðvertical length scalesÞ
ðhorizontal length scalesÞ :
This allows a considerable simplification in the mathematical formulation by assuming a hydrostatic

pressure distribution. However, these flows are not exactly two-dimensional, they exhibit a three-dimen-

sional structure for instance due to bottom topography and bottom friction. In many shallow flows these
effects are not essential and it is sufficient to deal with a depth- integrated or depth-averaged form. One

popular model family describing the time-dependent behaviour of granular or water saturated granular

masses moving down a slope in response to gravitational acceleration (e.g. snow avalanches, landslides,

rock falls and debris flows) is based on the Savage–Hutter theory [7,25,26,33]. It assumes an incompressible

shallow flow behaviour and that the flowing mass behaves as a Mohr–Coulomb plastic material at yield.

The basal shear stress is therefore equal to the normal basal pressure multiplied by a friction coefficient

tan/bed, with the basal friction angle /bed. Hereby bed stands for bed level. For water saturated granular

masses this SH-theory was partly modified and extended in order to take the interstitial fluid into account,
yielding to the ID-equations [3,15,16]. However, this model does not correspond to the SH-theory when the

fluid phase vanishes because (1) it does not neglect the cross-slope gradients o
oy as was done in the SH-theory

but (2) it neglects important terms originating from the kinematic bottom boundary condition, taking

account of the variable bed slope; these are necessary from physical and mathematical point of views. Here

we are dealing with the ID-theory, by taking all the above mentioned terms into account. In conservation-
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law form these equations in two-dimensional vector notation are presented below. They describe the flow at

time tP 0 at x; y 2 R and read

otqþ oxfðqÞ þ oygðqÞ ¼ SðqÞ ð1Þ

with

q :¼ qðx; y; tÞ :¼ ðh; hu; hvÞT; ð2Þ

the flux vectors

fðqÞ :¼
hu

hu2 þ 1
2
½ð1� kÞka=p þ k�gzh2

quv

0
@

1
A;
gðqÞ :¼
qv
qvu

qv2 þ 1
2
½ð1� kÞka=p þ k�gzh2

0
@

1
A;

and the source term vector, representing the net driving force

SðqÞ :¼
0

�gzh
ozbed
ox þ sx

�gzh
ozbed
oy þ sy

0
@

1
A:

In the expression for SðqÞ the first terms represent the above-mentioned contributions omitted by Iverson

and Denlinger [16]. The second terms represent the source contributions of the Cauchy stress tensor sx, sy
and are given by:

sx ¼ gxh�
u
jvj ð1� kÞ gz

�
þ u2

oHx

ox

�
h tan/bed �

3vfl
q

u
h
þ vflh

q
o2u
ox2

� sgn
ou
oy

� �
hka=p �

o

oy
½gzhð1� kÞ� sin/int þ

vflh
q

o2u
oy2

ð3Þ

and

sy ¼ gyh�
v
jvj ð1� kÞ gz

�
þ v2

oHy

ox

�
h tan/bed �

3vfl
q

v
h
þ vflh

q
o2v
ox2

� sgn
ov
oy

� �
hka=p �

o

oy
½gzhð1� kÞ� sin/int þ

vflh
q

o2v
oy2

: ð4Þ

Here ka=p is the earth pressure coefficient, representing the ratio between the normal stress in the down- or

cross-slope direction and the vertical normal stress

ka=p ¼
2

� 1�cos2 /intð1þtan2 /bedÞ½ �1=2
cos2 /int

� 1 : ou
ox þ ov

oy

� �
< 0

h i
;

2
þ 1�cos2 /intð1þtan2 /bedÞ½ �1=2

cos2 /int
� 1 : ou

ox þ ov
oy

� �
> 0

h i
:

8><
>:

The subscript a indicates an active stress state corresponding to a dilatation of the material and the sub-

script p a passive stress state associated with a compression.
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The pore pressure pbedðx; y; tÞ is described through an advection–diffusion equation

opbed
ot

þ u
opbed
ox

þ v
opbed
oy

¼ D
o2pbed
oz2

����
bed

; ð5Þ

as proposed by [16]. In this notation h is the flow depth normal to the local bed surface, v ¼ ðu; v; 0ÞT the

vector of the depth-averaged velocity, g ¼ ðgx; gy ; gzÞT the vector of the gravitational acceleration, /int, /bed

the internal and the bed friction angle, vf the fluid volume fraction, l the pore fluid dynamic viscosity, zbed
the bottom height function, H ¼ ðHx;Hy ; 0ÞT the vector of the angle of the local bed slope, k ¼ pbed

qgzh
the ratio

between the pore pressure and the normal pressure and D the pore pressure diffusivity.

The system of model Eq. (1) can be rewritten as

otqþAoxqþBoyq ¼ SðqÞ ð6Þ

with

AðqÞ :¼ oq

ox
¼

0 1 0

c2 � u2 2u 0
�uv v u

0
@

1
A

and

BðqÞ :¼ oq

oy
¼

0 0 1

�uv v u
c2 � u2 2u 0

0
@

1
A:

The gravity wave speed has the form c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1� kÞka=p þ k�gzh

p
. The eigenvalues of A and B are k1 ¼ u,

k2 ¼ v, k3=5 ¼ u� c and k4=6 ¼ v� c. The right and left eigenvector matrices are the same as those for the

shallow-water equations but differ in the gravity wave speed [3].
3. Numerical scheme

3.1. Wave-propagation algorithm

The general conservation law in one space dimension

otqþ oxfðqÞ ¼ 0 ð7Þ

with qðx; tÞ 2 Rm the vector of conserved quantities or the more general variable-coefficient quasi-linear
form

otqþAðqÞoxq ¼ 0 ð8Þ

with AðqÞ the Jacobian matrix of f can be solved on a one-dimensional finite volume grid using a wave-

propagation algorithm which bases on the solution of Riemann problems for the wave structure and the

introduction of a fluctuation splitting technique and was developed by LeVeque [18].

The approximate solution of the Riemann problem consisting of Eq. (7) and the initial data

qðx; t ¼ 0Þ ¼ ql ðx < 0Þ;
qr ðx > 0Þ

�

is derived using Eq. (8). This requires the approximation of cell averages over the ith time interval

Dtn ¼ tnþ1 � tn
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Qi �
1

Dx

Z x
iþ1

2

x
i�1

2

qðx; tnÞ dx ð9Þ

with Dx ¼ x
iþ1

2

� x
i�1

2

and the definition of an approximate Jacobian matrix A
i�1

2

at the interface x
i�1

2

be-

tween two cells Ci ¼ ½x
i�1

2

; x
iþ1

2

� and Ci�1 ¼ ½x
i�3

2

; x
i�1

2

� which reflects the wave structure at the interface.

The solution of the one-dimensional Riemann problem between the cells i and i� 1, Ci, Ci�1 can then be

expressed as a set of waves

Qi �Qi�1 ¼
Xm
p¼1

ap
i�1

2

r
p
i�1

2

¼
Xm
p¼1

Wp
i�1

2

ð10Þ

with ap
i�1

2

the wave strength of the pth wave and the eigenvector r
p

i�1
2

. Each wave changes the cell averages by

a certain amount with the consequence that the averages at time t þ Dt can be found by simply adding these

independent amounts. Here Wm 2 Rm is the jump across the mth wave with an associated wave speed

sm 2 R.

The net effect of all left-going and all right-going waves on the cell averages are represented by the

symbols AþDQ
i�1

2

and A�DQ
i�1

2

. They should be interpreted as single functional entities that are mea-

sures for the net effect of all right- and all left-going waves, originating at point x
i�1

2

and are called

fluctuations. Note that within the cell Ci the right-going fluctuations from the left edge AþDQ
i�1

2

and the

left-going fluctuations from the right edge A�DQiþ1
2
affect the cell averages as shown in Fig. 1. The

fluctuations AþDQ
i�1

2

and A�DQ
i�1

2

are motivated through the assumption of a constant coefficient linear

system

otqþAoxq ¼ 0: ð11Þ

The fluctuation matrices are A� ¼ RK�R�1 with A
i�1

2

¼ Aþ þA�, R ¼ ½r1jr2 � jrm� the matrix of right

eigenvectors and K ¼ diagðs1; s2; . . . ; smÞ the eigenvalue matrix of the Jacobian and K� ¼
diagððs1Þ�; ðs2Þ�; . . . ; ðsmÞ�Þ.

The Godunov method in the wave-propagation form is now given by

Qnþ1
i ¼ Qn

i �
Dt
Dx

AþDQi�1
2

h
þA�DQiþ1

2

i
: ð12Þ
q iq i 1- q i 1+

∆q i 1+
-Aq i∆-A q iA ∆+ ∆q i 1+A+

x x xx
ii - 1 i + 1 i + 2

t

t

n

n+1

Fig. 1. Waves and fluctuations for the one-dimensional Godunov method.
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For a given set of data Qi�1, Qi, an appropriate Riemann solution should define functions Q̂m�1

i�1
2

ðxtÞ that

approximate the true solution of the intermediate states arising through the process of connecting Qi�1, Qi

by a sequence of discontinuities.

If the approximate Riemann solver is conservative it has to satisfy the following property:

AþDQi�1
2
þA�DQi�1

2
¼ fðQiÞ � fðQi�1Þ: ð13Þ

The fluctuations of the Godunov method at the interface x
i�1

2

are

AþDQi�1
2
¼ f Q̂m�1

i�1
2

� �
� fðQi�1Þ¼

: Xm
p¼1

ðsp
i�1

2

ÞþWp
i�1

2

;

A�DQi�1
2
¼ f Qið Þ � fðQ̂m�1

i�1
2
Þ¼:

Xm
p¼1

ðsp
i�1

2

Þ�Wp
i�1

2

ð14Þ

with ðsp
i�1

2

Þþ and ðsp
i�1

2

Þ� the wave speeds with positive and negative signs, respectively. The Godunov

method in the wave-propagation form may adequately be presented as

Qnþ1
i ¼ Qn

i �
Dt
Dx

Xm
p¼1

ðsp
i�1

2

ÞþWp
i�1

2

"
þ
Xm
p¼1

ðsp
iþ1

2

Þ�Wp
iþ1

2

#
: ð15Þ

This algorithm can be extended to a high-resolution version

Qnþ1
i ¼ Qn

i �
Dt
Dx

Xm
p¼1

ðsp
i�1

2

ÞþWp
i�1

2

"
þ
Xm
p¼1

ðsp
iþ1

2

Þ�Wp
iþ1

2

#

þ Dt2

D2x2
Xm
p¼1

ðsp
i�1

2

Þþ
� �2

Wp
i�1

2

"
�
Xm
p¼1

ðsp
iþ1

2

Þ�
� �2

Wp
iþ1

2

#
ð16Þ

as presented by [19].

With a source term SðqÞ the balance law

otqþ oxfðqÞ ¼ SðqÞ ð17Þ

replaces the conservation law. The solution requires an extension of the algorithm, which effectively in-

volves the determination of the Jacobian A
i�1

2

at the interface x
i�1

2

or in other words the decomposition of

the difference between the flux difference and the source term

Ai�1
2
ðQi �Qi�1Þ ¼ f iðQiÞ � f i�1ðQi�1Þ � DxSi�1

2
ð18Þ

into waves [21].

The fluctuation equation (14) is modified as follows:

AþDQi�1
2
¼ f Q̂m�1

i�1
2

� �
� fðQi�1Þ � DxSi�1

2
¼:

Xm
p¼1

ðsp
i�1

2

ÞþWp
i�1

2

� DxSi�1
2
;

A�DQi�1
2
¼ fðQiÞ � fðQ̂m�1

i�1
2
Þ ¼:

Xm
p¼1

ðsp
i�1

2

Þ�Wp
i�1

2

� DxSi�1
2
:

ð19Þ

The generated waves carry no increments in the conservative variables q but flux increments. They have the

form of q-increments multiplied by the wave speed. Each wave changes the fluctuations by a certain amount
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with the consequence that resulting fluctuations for left- and right-going waves can be found by simply

adding up these independent contributions. The relation between the standard wave-propagation algorithm

(Section 3.1) and the modified wave-propagation algorithm taking a source term into account lies in the
relevance of conditions (13) and (18), which represent the Rankine–Hugoniot relation with s ¼ 0 [21].

The higher order Godunov method in the wave-propagation form that accounts for a source term is

Qnþ1
i ¼ Qn

i �
Dt
Dx

Xm
p¼1

ðsp
i�1

2

ÞþWp
i�1

2

"
� DxSiþ1

2
þ
Xm
p¼1

ðsp
iþ1

2

Þ�Wp
iþ1

2

� DxSiþ1
2

#

þ Dt2

2Dx2
Xm
p¼1

ðsp
i�1

2

Þþ
� �2

Wp
i�1

2

"
� DxSi�1

2
�
Xm
p¼1

ðsp
iþ1

2

Þ�
� �2

Wp
iþ1

2

� DxSiþ1
2

#

� Dt2

2Dx2
SqðQiÞ

Xm
p¼1

1

2
ðsp

i�1
2

ÞþWp
i�1

2

�"
� DxSi�1

2
þ ðsp

iþ1
2

Þ�Wp
iþ1

2

� DxSiþ1
2

�#
ð20Þ

with SqðQiÞ the Jacobian of the discretized source term vector.

3.2. The HLL approximate Riemann solver

Considering given states Qi�1, Qi the solution of the Riemann problem will yield a set of waves at the

interface x
i�1

2

. The HLL approximate Riemann solver is based on the estimate of the smallest and the largest

wave speeds arising in the Riemann solution [32]. There are two waves W1

i�1
2

, W2

i�1
2

with corresponding

speeds s1
i�1

2

, s2
i�1

2

and one intermediate state Q̂1

i�1
2

. It is determined through the assumption that the ap-

proximate solution satisfies Eq. (13)

fðQiÞ � fðQi�1Þ ¼ s1i�1
2
ðQ̂1

i�1
2
�Qi�1Þ þ s2i�1

2
Qi

�
� Q̂1

i�1
2

�
: ð21Þ

After some algebra it follows for Q̂1

i�1
2

:

Q̂1
i�1

2
¼

fðQiÞ � fðQi�1Þ � s2
i�1

2

Qi þ s1
i�1

2

Qi�1

s1
i�1

2

� s2
i�1

2

: ð22Þ

The waves have the form

W1
i�1

2
¼ Q̂1

i�1
2
�Qi�1; W2

i�1
2
¼ Qi � Q̂1

i�1
2

and the wave speeds s1
i�1

2

, s2
i�1

2

are estimated through the left and right eigenvalues

s1i�1
2
¼ ui�1 �

ffiffiffiffiffiffiffiffiffiffi
ghi�1

p
; s2i�1

2
¼ ui þ

ffiffiffiffiffiffi
ghi

p
with hi, ui the flow height and depth-averaged horizontal velocity and g the gravitational acceleration.

Taking a source term into account changes the fluctuation equation (19) for the HLL-solver (m ¼ 2) to

AþDQi�1
2
¼

X2

p¼1

ðsp
i�1

2

ÞþWp
i�1

2

� DxSi�1
2
;

A�DQi�1
2
¼

X2

p¼1

ðsp
i�1

2

Þ�Wp
i�1

2

� DxSi�1
2
;

ð23Þ

which has to be substituted in Eq. (15).



158 P. Vollm€oller / Journal of Computational Physics 199 (2004) 150–174
3.3. The HLLC approximate Riemann solver

The HLLC approximate Riemann solver is an improved version of the HLL solver (Section 3.2) since it
contains an additional wave, the so-called contact discontinuity [29]. Considering the same Riemann

problem as for the HLL case three waves will be generated at the interface x
i�1

2

with two intermediate states,

Q̂1

i�1
2

and Q̂2

i�1
2

. The assumption is made that the wave speed estimates sp
i�1

2

for p ¼ 1; 2; 3 are available with

s1
i�1

2

< s2
i�1

2

< s3
i�1

2

and that the speeds s1
i�1

2

, s3
i�1

2

correspond to the two waves of the HLL-solver and are

estimated by

s1i�1
2
¼ ui�1 �

ffiffiffiffiffiffiffiffiffiffi
ghi�1

p
; s3i�1

2
¼ ui þ

ffiffiffiffiffiffi
ghi

p
:

If the flow heights hi, hi�1 do not vanish, the speed of the additional wave s2
i�1

2

is assumed to be the speed

of the intermediate state of an approximate Riemann solver dealing with two rarefactions, having the form

s2
i�1

2

¼ 1
2
ðui þ ui�1Þ �

ffiffiffiffiffiffi
ghi

p
þ

ffiffiffiffiffiffiffiffiffiffi
ghi�1

p
. Here ui, ui�1 are the depth-averaged horizontal velocities in the cells Ci,

Ci�1. If either hi ¼ 0, hi�1 6¼ 0 or hi 6¼ 0, hi�1 ¼ 0 hold, the speed s2
i�1

2

of the additional

wave is

s2i�1
2
¼

s1
i�1

2

hiðui � s3
i�1

2

Þ � s3
i�1

2

hi�1ðui�1 � s1
i�1

2

Þ
hiðui � s3

i�1
2

Þ � hi�1ðui�1 � s1
i�1

2

Þ : ð24Þ

This form for the speed s2
i�1

2

and the intermediate states are determined by assuming that the approximate

solutions must satisfy condition (13) as for the HLL-solver in Section 3.2

fðQ̂1
i�1

2
Þ � fðQi�1Þ ¼ s1i�1

2
ðQ̂1

i�1
2
�Qi�1Þ;

fðQiÞ � fðQ̂2
i�1

2
Þ ¼ s3i�1

2
ðQi � Q̂2

i�1
2
Þ;

ð25Þ

which leads to the following expressions for the intermediate states

Q̂1
i�1

2
¼

fðQ̂1
i�1

2
Þ � fðQi�1Þ
s1
i�1

2

þQi�1; Q̂2
i�1

2
¼

fðQ̂2
i�1

2
Þ � fðQiÞ
s3
i�1

2

þQi

or in vector representation

Q̂1
i�1

2
¼

hi�1ðs1i�1
2

� ui�1Þ
s1
i�1

2

� s2
i�1

2

�
1

s2
i�1

2

� 	
; Q̂2

i�1
2
¼

hiðs3i�1
2

� uiÞ
s3
i�1

2

� s2
i�1

2

�
1

s2
i�1

2

� 	
:

The corresponding waves have the form

W1
i�1

2
¼ Q̂1

i�1
2
�Qi�1; W2

i�1
2
¼ Q̂2

i�1
2
� Q̂1

i�1
2
; W3

i�1
2
¼ Qi � Q̂2

i�1
2
: ð26Þ

Considering the first components of the vector equations (25) and taking into account that hi ¼ hi�1 for an

exact Riemann solver, Eq. (24), for the speed of wave s2
i�1

2

follows after some algebra.

The fluctuations (14) for the HLLC-solver (m ¼ 3) have to be modified in case of a source term, yielding

the form
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AþDQi�1
2
¼

X3

p¼1

ðsp
i�1

2

ÞþWp
i�1

2

� DxSi�1
2
;

A�DQi�1
2
¼

X3

p¼1

ðsp
i�1

2

Þ�Wp
i�1

2

� DxSi�1
2
:

ð27Þ

3.4. Approximate Riemann solver for a dry bed

In many applications (e.g. moving water fronts, damm break problems, avalanches, debris flows, etc.)

the downslope moving material has a finite extension and is confined by a boundary which moves with the

flow velocity. Outside this boundary is a vacuum, which means that there is a wet region adjacent to a dry

region. The exact determination of wet/dry front velocities is essential and justifies the application of the

shock-capturing approach involving the utilization of a single scheme for the complete domain. Shock-

waves as well as rarefaction waves emerge as part of the solution and are easily extractable in special cases
like wet/dry fronts. Basically the governing equation (1) represents a continuum description and do not

hold in dry regions. In the numerical computation of shallow flows, there are only minor problems in cases

with flow heights h > 0 everywhere, whereas in regions with h ¼ 0 adjacent to regions with h > 0 serious

computational problems might occur, because the velocity in the dry regions is not well defined. The

equations have to be solved in the wet region right up to the boundary between both regions. The simplest

case is the horizontal dam adjacent to a dry horizontal region, representing the general form for the one-

dimensional Riemann problem (7), with the initial data

qðx; t ¼ 0Þ ¼ qwet ðx < 0Þ;
qdry ðx > 0Þ:

�

Fig. 2 shows the solutions of the one-dimensional wet/dry Riemann problem with the dry bed initial data on

the right side (upper) and on the left side (lower), respectively. For a dry bed on the right side the solution

consists of a single left rarefaction which speed is associated with the left eigenvalue s1
i�1

2

¼ ui�1 �
ffiffiffiffiffiffiffiffiffiffi
ghi�1

p
.

There is no shock because a shock wave cannot be adjacent to a dry region. The wet/dry front corresponds
to the tail of the left rarefaction and has the exact propagation speed s1

i�1
2

. For a dry bed on the left side the

solution consists of a single right rarefaction wave, whereby the speed is associated with the right eigenvalue

s2
i�1

2

¼ ui þ
ffiffiffiffiffiffi
ghi

p
. In the second case the wet/dry front corresponds to the tail of the right rarefaction and has

the exact propagation speed s2
i�1

2

[32].

The HLL and the HLLC approximate Riemann solvers offer a simple way of dealing with dry bed
situations and the determination of the wet/dry front velocities [30]. The required wave speed estimates are

s1
i�1

2

, s2
i�1

2

for the HLL-solver and s1
i�1

2

, s2
i�1

2

and s3
i�1

2

for the HLLC-solver. For the HLL-solver the wave

speeds are estimated as the exact dry front speeds through

s1i�1
2
¼

ui � 2
ffiffiffiffiffiffi
ghi

p
if ðhi�1 ¼ 0; hi > 0Þ;

ui�1 �
ffiffiffiffiffiffiffiffiffiffi
ghi�1

p
if ðhi�1 > 0; hi ¼ 0Þ;

(

s2i�1
2
¼

ui�1 þ 2
ffiffiffiffiffiffiffiffiffiffi
ghi�1

p
if ðhi�1 > 0; hi ¼ 0Þ;

ui þ
ffiffiffiffiffiffi
ghi

p
if ðhi�1 ¼ 0; hi > 0Þ;

(

whereas the wave speeds for the HLLC-solver have the following form taking the contact discontinuity s2
i�1

2into account
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S2
i–1/2S1
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wet region dry region

wet regiondry region

Fig. 2. Solution of the Riemann problem involving a dry bed state. Upper: For the dry bed on the right side the solution consists of a

single left rarefaction wave. Lower: For the dry state on the left side the solution consists of a single right rarefaction wave.
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s1i�1
2
¼ ui � 2

ffiffiffiffiffiffi
ghi

p
if ðhi�1 ¼ 0; hi > 0Þ;

ui�1 �
ffiffiffiffiffiffiffiffiffiffi
ghi�1

p
if ðhi�1 > 0; hi ¼ 0Þ;

�

s2i�1
2
¼

s1
i�1

2

hiðui�s3
i�1

2

Þ�s3
i�1

2

hi�1ðui�1�s1
i�1

2

Þ

hiðui�s3
i�1

2

Þ�hi�1ðui�1�s1
i�1

2

Þ if ðhi�1 ¼ 0 or hi ¼ 0Þ;
1
2
ðui þ ui�1Þ þ

ffiffiffiffiffiffi
ghi

p
þ

ffiffiffiffiffiffiffiffiffiffi
ghi�1

p
if ðhi�1 > 0; hi > 0Þ;

8><
>:
s3i�1
2
¼ ui�1 þ 2

ffiffiffiffiffiffiffiffiffiffi
ghi�1

p
if ðhi�1 > 0; hi ¼ 0Þ;

ui þ
ffiffiffiffiffiffi
ghi

p
if ðhi�1 ¼ 0; hi > 0Þ:

�

4. Numerical experiments

Since our focus lies on the application of the first order and not of the second order method, the first one

consisting of the HLLC approximate Riemann solver (Sections 3.3 and 3.4) and the wave-propagation

approach (Section 3.1) in the balance law context is applied to the following test problems.

Problem I: A dry granular mixture with a total volume of 290 cm3 downslides an inclined rectangular

flume. The experimental conditions are the same as in a laboratory experiment carried out by [3] which

serves as a reference solution. The inclination angleHðx; yÞ and the experimental setup will be determined in

Section 4.1.

Problem II: 1500 cm3 of the dry mixture downslides the rectangular flume having a different inclination
angle as in the first test problem (to be determined in Section 4.1). In this experiment the ability of the

numerical scheme to handle travelling shock waves is investigated [7,27,28,33].
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Problem III: The dry mixture with a total volume of 290 cm3 downslides an inclined plane having the

same inclination angle as in test problem I.

Problem IV: 800 cm3 of the dry mixture downslides the inclined plane which has the same inclinations
angle as in test problem II. The flow is diverted by an obstacle located on the inclined plane.

Problem V: A fluid-saturated granular mixture with a total volume of 290 cm3 downslides the same

inclined plane as in test problem III.

These computational experiments serve as realistic testcases concerning the incorporation of complicated

source terms using the wave-propagation approach (Section 3.1) with the HLLC Riemann solver. Since

there is only in the case of test problem I a reference solution the results of the other computational ex-

periments are judged through the results computed with the first order method in the fractional-step context

[21]. In so doing the solution and integration of system (1) using the fractional-step approach involves a
two-step solving procedure. In the first step only the homogeneous part of the system is solved with the

HLLC approximate Riemann solver (Sections 3.3 and 3.4), assuming that the source term vector is iden-

tically zero (SðqÞ ¼ 0). In the second step the real source term is taken into account and requires the in-

tegration of the ordinary differential equation

dq
dt

¼ SðqÞ ð28Þ

in the time interval Dt, with the solution of the homogeneous part as the initial condition. The solution of

the ODE is achieved by using an explicit Euler method, which delivers first order accuracy in space and time
[31].
4.1. Rectangular-flume experiments (I, II)

The computational domain in the experiments I and II is a rectangle withx 2 ½0; 2:2� � y 2 ½�0:1; 0:1�. It
consists of an inclined region, a horizontal runout and a smooth transition region in between. The regions

are characterized by the inclination angle Hðx; yÞ ¼ ðHx; 0; 0ÞT. In the case of experiment I it has the form

HxðxÞ ¼
H0 : ðx6 1:0Þ;
H0ð1� ðx� 1:0Þ=0:05Þ : ð1:0 < x < 1:05Þ;
0 : ðxP 1:05Þ

8<
:

with H0 ¼ 31:4�.
Table 1

Material properties essential for the numerical simulation of the dry and the fluid-saturated granular flow experiments

Parameter Dry granular flow Fluid-saturated granular flow

Basal friction angle /bed (�) 29 28

Internal friction angle /int (�) 40 42

Solid volume fraction vs 0.6 0.6

Fluid volume fraction vf 0.4 0.4

Fluid viscosity l (Pa s) 2� 10�5 (air) 0.1 (muddy water)

Solid density qs (kg/m) 2650 (quartz) 2700 (quartz, feldspar, etc.)

Fluid density qf (kg/m) 1 (air) 1200 (muddy water)

Mixture bulk density q (kg/m) 1600 2000

Hydraulic diffusivity D (m/s2) 0.05 10�4

Initial pore pressure ratio 0.0 0.9



Fig. 3. Dry granular mixture flow height of the rectangular-flume experiment computed with the wave-propagation method. The

rectangular flume consists of an inclined region (x < 1:0) with inclination angle H0 ¼ 31:4�, a horizontal runout (x > 1:05) and a

smooth transition region in between (1:0 < x < 1:05). Left: Isoline representation of the flow height as function of time. Contours

depict 1-mm isopachs of flow thickness normal to the bed. Right: Vertical slice (x–z) of the flow height on the bed surface, multiplied by

a factor of 3 for a better visualization.
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The initial condition for the flow height hðx; yÞ of the dry granular material is

hðxÞ ¼ 0:879897 sinðpðx� 0:58ÞÞ � 0:3 sinð2pðx� 0:58ÞÞ : x 2 ½0:58; 0:635�;
0 : else:

�

In the case of experiment II the inclination angle Hðx; yÞ and the initial condition for the flow height hðx; yÞ
are

HxðxÞ ¼
H0 : ðx6 0:8Þ;
H0ð1� ðx� 0:8Þ=0:15Þ : ð0:8 < x < 0:95Þ;
0 : ðxP 0:95Þ

8<
:



Fig. 4. Dry granular mixture flow height of the rectangular-flume experiment computed with the fractional-step method. The rect-

angular flume consists of an inclined region (x < 1:0) with inclination angle H0 ¼ 31:4�, a horizontal runout (x > 1:05) and a smooth

transition region in between (1:0 < x < 1:05). Left: Isoline representation of the flow height as function of time. Contours depict 1-mm

isopachs of flow thickness normal to the bed. Right: Vertical slice (x–z) of the flow height on the bed surface, multiplied by a factor of 3

for a better visualization.
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with H0 ¼ 40� and

hðxÞ ¼ 5ð0:879897 sinðpðx� 0:58ÞÞ � 0:3 sinð2pðx� 0:58ÞÞÞ : x 2 ½0:58; 0:635�;
0 : else:

�

4.2. Inclined plane experiments (III–V)

The computational domain in the inclined plane experiments has the dimensions x 2 ½0; 2:2��
y 2 ½�0:3; 0:3�. As in the experiments I and II it consists of an inclined region, a horizontal runout and a

smooth transition region in between. In the cases of the experiments III and V the inclination angle Hðx; yÞ
has the same form as in experiment I. The initial conditions for the flow height of the dry and the saturated



Fig. 5. Flow height results of the laboratory flume experiment done by Denlinger and Iverson [3]. Contours depict 1-mm isopachs of

flow thickness normal to the bed.
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granular flows in experiments III and V correspond to the shape of a hemispherical shell or a cap with a

total volume of 290 cm3 and the center at ðxcjycÞ ¼ ð0:59j0:0Þ

hðx; yÞ ¼ 0:0265 1� ðx�xcÞ2
0:01

� ðy�ycÞ2
0:0049

� �
: ðx�xcÞ2

0:01
� ðy�ycÞ2

0:0049
< 1:

0 : else:

(

In experiment IV where the dry granular flow is diverted by an obstacle, the inclined plane has the same
inclination angle Hðx; yÞ ¼ ðHx; 0; 0ÞT as in experiment II. The obstacle has the shape of an obelisk, the

center is located at ðxcjycÞ ¼ ð0:2j0:0Þ. The ground (gr) and the top (tp) faces have the dimensions



Fig. 6. Vertical slice (x–z) representation of the dry granular mixture flow height of the rectangular-flume experiment computed with

the wave-propagation method. The rectangular flume consists of an inclined region (x < 0:8) with inclination angle H0 ¼ 40�, a
horizontal runout (x > 0:95) and a smooth transition region in between (0:8 < x < 0:95). The flow height on the bed surface is

multiplied by a factor of 3 for a better visualization. The scale on the ordinate changes between the first and the other timeslices.
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xgr 2 ½0:465; 0:535� � ygr 2 ½�0:035; 0:035� and xtp 2 ½0:476; 0:523� � ytp 2 ½�0:023; 0:023�, respectively. The
total height of the obelisk is ztot ¼ 0:6. The position of the cap and the initial flow height are

ðxcjycÞ ¼ ð0:2j0:0Þ,

hðx; yÞ ¼ 0:07 1:� ðx�xcÞ2
0:01

� ðy�ycÞ2
0:0049

� �
: ðx�xcÞ2

0:01
� ðy�ycÞ2

0:0049
< 1;

0 : else:

(

The mass starts in all experiments from rest, so the initial condition for the velocity is v ¼ ð0; 0; 0ÞT. The
boundaries are closed at the sides parallel and open at the sides rectangular to the downslope or flow di-

rection. There is no interstitial fluid assumed for the dry granular flow hence there must be no pore-pressure



Fig. 7. Vertical slice (x–z) representation of the dry granular mixture flow height of the rectangular-flume experiment computed with

the fractional-step method. The rectangular flume consists of an inclined region (x < 0:8) with inclination angle H0 ¼ 40�, a horizontal

runout (x > 0:95) and a smooth transition region in between (0:8 < x < 0:95). The flow height on the bed surface is multiplied by a

factor of 3 for a better visualization. The scale on the ordinate changes between the first and the other timeslices.
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considered, whereas in the case of the fluid-saturated granular flow it dominates the dynamical behaviour in

the initiation phase and hence Eq. (5) has to be solved as proposed by [16]. The characteristics of the dry

and the saturated material mixtures as proposed by [3] are shown in Table 1.

The subject of this numerical experiments is the evaluation of the influence of the two numerical schemes

mentioned at the beginning of Section 4, on the computational results of the flowing and stopping be-
haviour, the shape of the depositions and the total propagation lengths. The computations are carried out

on a numerical grid with 400 grid cells in x- and 100 in y-direction. The applied methods are of first order

accuracy. This might lead to results which are smeared out compared to second order results, nevertheless

the focus lies on a comparison of the first order results computed on the mentioned relatively fine numerical

grid.



Fig. 8. Flow height results of the dry granular mixture of the inclined-plane experiment, computed with the wave-propagation method,

as isoline representation. The inclined plane consists of an inclined region (x < 1:0) with inclination angle H0 ¼ 31:4�, a horizontal

runout (x > 1:05) and a smooth transition region in between (1:0 < x < 1:05). Contours depict 1-mm isopachs of flow thickness normal

to the bed.

P. Vollm€oller / Journal of Computational Physics 199 (2004) 150–174 167
4.3. Numerical results and discussion

In all experiments the material mixtures are suddenly released at time t ¼ 0. The bulk material starts to

slide down the inclined plane, passes the transition region and comes to rest in the horizontal runout zone.

In the following all results are shown for both applied methods. Additionally the contours in the isoline
representations depict 1-mm isopachs of flow thickness normal to the bed and the flow heights on the bed

surface presented in the vertical slices are multiplied by a factor of 3 for a better visualization.



Fig. 9. Flow height results of the dry granular mixture of the inclined-plane experiment, computed with the fractional-step method, as

isoline representation. The inclined plane consists of an inclined region (x < 1:0) with inclination angleH0 ¼ 31:4�, a horizontal runout
(x > 1:05) and a smooth transition region in between (1:0 < x < 1:05). Contours depict 1-mm isopachs of flow thickness normal to the

bed.
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Figs. 3 and 4 show the simulation results for the flow heights of experiment I at seven timeslices for both

applied schemes as an isoline representation (left) and a vertical slice (x–z) representation (right). The

comparison with results of a laboratory experiment done by Iverson and Denlinger [3] and presented in

Fig. 5 reveals a significantly high agreement between the wave-propagation, the fractional-step and the

laboratory results until t ¼ 0:53 s. After 0.53 s there is a higher agreement between the laboratory and the
wave-propagation results which even increases after 0.93 s. In the laboratory experiment the material

completely comes to rest after 1.5 s and exhibits a sharp gradient in the upflow direction and a smooth flow



Fig. 10. Flow height results of the dry granular mixture for the inclined-plane experiment, computed with the wave-propagation

method, as isoline representation. The inclined plane consists of an inclined region (x < 0:8) with inclination angle H0 ¼ 40�, a hor-

izontal runout (x > 0:95), a smooth transition region in between (0:8 < x < 0:95) and an obstacle located in the inclined region, which

diverts the flow. Contours depict 1-mm isopachs of flow thickness normal to the bed.
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height decrease in the down flow direction. The wave-propagation results show that after 1.5 s there is still a

slight downflowing motion, which differs from the lab experiments, but the material completely comes to

rest between 1.5 and 2.0 s. The reason might be that the Coulomb friction model which describes the

stoppage of the material does not exactly reflect the natural conditions. It is a constitutive relation with a

heuristic motivation, since the applied earth pressure coefficient ka=p, introduced by Savage and Hutter [25],

describes a discontinuous behaviour depending on the velocity gradient. It reaches the maximum for o~u
o~x > 0

and in the case of small flow heights like in the tail margins this causes an unphysically strong flow resisting

force (3) and (4) and hence too small down flow velocities for the �tail material�. Despite these shortcomings
the model works quite resonable because the results show a significant flow height gradient in the upflow

direction and a smooth flow height decrease in the down flow direction and hence the flow height behaviour



Fig. 11. Flow height results of the dry granular mixture for the inclined-plane experiment, computed with the fractional-step method,

as isoline representation. The inclined plane consists of an inclined region (x < 0:8) with inclination angle H0 ¼ 40�, a horizontal

runout (x > 0:95), a smooth transition region in between (0:8 < x < 0:95) and an obstacle located in the inclined region, which diverts

the flow. Contours depict 1-mm isopachs of flow thickness normal to the bed.
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almost completely agrees with the lab experiments except for the tail margin. In the fractional-step case

there is still some downflowing motion after 2.0 s, indicating a worst bulk velocity and the deposited

material exhibits worst gradients in the upflow and the down flow direction compared to the wave-prop-

agation results.
The results of the second experiment, shown in Figs. 6 and 7 for 20 timeslices, exhibit the ability of the

numerical schemes to resolve an upward propagating shock. Both schemes resolve it quite well, but the

wave-propagation scheme presents a more realistic flowing behaviour. The fractional-step results show

unphysically oscillations which originate from the gradients in the source terms in combination with the

way how the source terms are incorporated into the scheme. Additionally the mixture bulk velocity is

significantly higher and more realistic in the wave-propagation case as already seen in experiment I, with



Fig. 12. Flow height results of the saturated granular mixture for the inclined-plane experiment, computed with the wave-propagation

method, as isoline representation. The inclined plane consists of an inclined region (x < 1:0) with inclination angle H0 ¼ 31:4�, a
horizontal runout (x > 1:05) and a smooth transition region in between (1:0 < x < 1:05). Contours depict 1-mm isopachs of flow

thickness normal to the bed.
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the results that the shock starts to form after 0.4 s and it disappears after 1.05 s, whereas in the fractional-

step case it starts around 0.55 s and disappears around 1.3 s.

Figs. 8 and 9 show the flow height results of experiment III. They basically show the same flowing and
deposition behaviour than the �quasi-one-dimensional� experiment I. In addition they show that both

methods can cope with real two-dimensional situations and the qualitative comparison with laboratory

experiments done by [24] reveals a realistic flowing and deposition behaviour.



Fig. 13. Flow height results of the saturated granular mixture for the inclined-plane experiment, computed with the fractional-step

method, as isoline representation. The inclined plane consists of an inclined region (x < 1:0) with inclination angle H0 ¼ 31:4�, a
horizontal runout (x > 1:05) and a smooth transition region in between (1:0 < x < 1:05). Contours depict 1-mm isopachs of flow

thickness normal to the bed.
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The results of experiment IV are shown in Figs. 10 and 11. In this experiment the flow is diverted by an

obstacle being located on the inclined plane. They confirm the facts that on the one side the typical bulk

velocity in the fractional-step case is significantly lower than in the wave-propagation case, which becomes

transparent for example at timeslice 0.8 s because a lot more material has reached the runout zone in the

wave-propagation case at this time. On the other side it must be mentioned that both methods as already

seen in experiment III can cope with real two-dimensional situations. A qualitative comparison with second
order results of [2] reveals a good qualitative agreement concerning the flowing and deposition behaviour.
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In the experiment V the flowing and deposition behaviour of a completely saturated granular mixture

down an inclined plane is computed. There seems to be no serious distinct between the two methods as

shown in Figs. 12 and 13, except the fact that the typical velocities in the wave-propagation context are
significantly higher. Both methods produce results which are influenced by the strong pore-pressure fluc-

tuations, the derivatives and cross-slope derivatives and show a fringed behaviour.

The conclusion of the five computational experiments is that having the laboratory experiments done by

Iverson and Denlinger [3] in mind, the wave-propagation method produces the more realistic results in

terms of time-dependant flowing and deposition behaviour. The typical bulk velocity is higher than in the

fractional-step case. The deposition behaviour which is dominated by the Coulomb friction approach,

respectively, the constitutive relation is more realistic in the wave-propagation case, since the typical flow

height gradients occurring in the deposited material show a greater agreement with the laboratory exper-
iments. There is almost no distinct between the total propagation distances of the top margins computed

with the two methods.
5. Conclusion

In this paper a shock-capturing wave-propagation method for the Savage–Hutter and the Iverson–

Denlinger equations, which represent a generalization of the Savage–Hutter equations, was developed.
These are systems of hyperbolic balance laws, taking the net driving force of the flow via source terms,

representing the constitutive material relations, into account. These balance laws describe the time-

dependent flow behaviour of dry granular or fluid-saturated granular flows e.g. debris flows over complex

three-dimensional basal topography. The main purpose was the development of a numerical method for

these equations which is based on a finite volume formulation and uses Godunov-type schemes, which

guarantees a better balancing between the advection part and the source terms representing the net driving

force of the material sliding than the classical fractional-step method. It additionally provides a solver

immanent front tracking property. The discrepancy between the results computed with the classical frac-
tional-step method on the one side and obtained through laboratory experiments on the other side requires

such a development. The wave-propagation method developed by LeVeque et al. [21] for balance laws was

adapted to the Iverson–Denlinger equations using a HLLC approximate Riemann solver. For a propa-

gating flow front, where the wet/dry problem as described in Section 3.4 occurs, it operates on the basis of

the exact Riemann solver and exhibits a solver immanent front treating property. The consideration of a

solver being able to handle a front propagation was important because the determination of the exact front

velocity is of importance for the quality of the results and hence requires a more sophisticated front

tracking technique. The results are satisfying since the agreement between the computational results of the
wave-propagation method and the laboratory results concerning the time-dependent propagation lengths,

respectively, the propagation velocities and the deposition behaviour is very good and a lot higher than the

agreement between the results computed with the fractional-step method and of the laboratory

experiments.
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